sexta-feira, 20 de maio de 2011

Micrococcus spp

Micrococcus (mi’ krō kŏk’ Əs) is a genus of bacteria in the Micrococcaceae family. Micrococcus occurs in a wide range of environments, including water, dust, and soil. Micrococci have Gram-positive spherical cells ranging from about 0.5 to 3 micrometers in diameter and are typically appear in tetrads. Micrococcus has a substantial cell wall, which may comprise as much as 50% of the cell mass. The genome of Micrococcus is rich in guanine and cytosine (GC), typically exhibiting 65 to 75% GC-content. Micrococci often carry plasmids (ranging from 1 to 100MDa in size) that provide the organism with useful traits.

Contents [hide]
1 Species
2 Environmental
3 Pathogenesis
4 Industrial uses
5 References


[edit] SpeciesSome species of Micrococcus, such as M. luteus (yellow) and M. roseus (red) produce yellow or pink colonies when grown on mannitol salt agar. Isolates of M. luteus have been found to overproduce riboflavin when grown on toxic organic pollutants like pyridine.[1] Hybridization studies indicate that species within the genus Micrococcus are not closely related, showing as little as 50% sequence homology. This suggests that some Micrococcus species may, on the basis of ribosomal RNA analysis, eventually be re-classified into other microbial genera.

[edit] EnvironmentalMicrococci have been isolated from human skin, animal and dairy products, and beer. They are found in many other places in the environment, including water, dust, and soil. M. luteus on human skin transforms compounds in sweat into compounds with an unpleasant odor. Micrococci can grow well in environments with little water or high salt concentrations. Most are mesophiles; some, like Micrococcus antarcticus (found in Antarctica) are psychrophiles.

Though not a spore former, Micrococcus cells can survive for an extended period of time: unprotected cultures of soil micrococci have been revived after storage in a refrigerator for 10 years.[citation needed] Recent work by Greenblat et al. demonstrate that Micrococcus luteus has survived for at least 34,000 to 170,000 years on the basis of 16S rRNA analysis, and possibly much longer.[2]

[edit] PathogenesisMicrococcus is generally thought to be a saprotrophic or commensal organism, though it can be an opportunistic pathogen, particularly in hosts with compromised immune systems, such as HIV patients.[3] It can be difficult to identify Micrococcus as the cause of an infection, since the organism is a normally present in skin microflora, and the genus is seldom linked to disease. In rare cases, death of immunocompromised patients has occurred from pulmonary infections caused by Micrococcus. Micrococci may be involved in other infections, including recurrent bacteremia, septic shock, septic arthritis, endocarditis, meningitis, and cavitating pneumonia (immunosuppressed patients).

[edit] Industrial usesMicrococci, like many other representatives of the Actinobacteria, can be catabolically versatile, with the ability to utilize a wide range of unusual substrates, such as pyridine, herbicides, chlorinated biphenyls, and oil.[4][5] They are likely involved in detoxification or biodegradation of many other environmental pollutants.[6] Other Micrococcus isolates produce various useful products, such as long-chain (C21-C34) aliphatic hydrocarbons for lubricating oils.

[edit] References1.^ Sims GK, Sommers LE, Konopka A (1986). "Degradation of Pyridine by Micrococcus luteus Isolated from Soil". Appl Environ Microbiol 51 (5): 963–968. PMC 238995. PMID 16347070. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=238995.
2.^ Greenblat, C.L., Baum, J., Klein, B.Y., Nachshon, S., Koltunov, V., Cano, R.J., (2004). "Micrococcus luteus – Survival in Amber". Microbial Ecology 48 (1): 120–127. doi:10.1007/s00248-003-2016-5. PMID 15164240.
3.^ Smith K, Neafie R, Yeager J, Skelton H (1999). "Micrococcus folliculitis in HIV-1 disease". Br J Dermatol 141 (3): 558–61. doi:10.1046/j.1365-2133.1999.03060.x. PMID 10583069.
4.^ Doddamani H, Ninnekar H (2001). "Biodegradation of carbaryl by a Micrococcus species". Curr Microbiol 43 (1): 69–73. doi:10.1007/s002840010262. PMID 11375667.
5.^ Sims GK, O'loughlin EJ (1992). "Riboflavin Production during Growth of Micrococcus luteus on Pyridine". Appl Environ Microbiol 58 (10): 3423–3425. PMC 183117. PMID 16348793. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=183117.
6.^ Zhuang W, Tay J, Maszenan A, Krumholz L, Tay S (2003). "Importance of Gram-positive naphthalene-degrading bacteria in oil-contaminated tropical marine sediments". Lett Appl Microbiol 36 (4): 251–7. doi:10.1046/j.1472-765X.2003.01297.x. PMID 12641721.


ref http://en.wikipedia.org/wiki/Micrococcus Acessado em 20/05/11

Regulatory Agencies





  1. http://www.bacteriamuseum.org/cms/Bacterial-Species-Cabinet/




  2. http://www.fda.gov/




  3. http://dg3.eudra.org/




  4. http://www.emea.eu.int/




  5. http://heads.medagencies.org/




  6. http://www.mhra.gov.uk/




  7. http://heads.medagencies.org/germany.html




  8. www. infarmed.pt/index2.html




  9. http://agmed.sante.gouv.fr/




  10. www.msc.es/agemed




  11. http://www.afigp.fgov.be/




  12. http://www.legemiddelverket.no/




  13. www.mpa.se/eng/index.html




  14. www.nam.fi/english/index.html




  15. www.ministerosalute.it/medicinali




  16. http://ec.europa.eu/health/documents/eudralex/vol-4/index_en.htm


  17. http://www.gmp-compliance.org/eca_link_navigator.html

  18. www.cbg-med-nl

  19. Australia - Therapeutic Goods Administration (TGA) - www.tga.gov.au

  20. Bulgaria - Bulgarian Drug Agency - www.bda.bg/web_engl/main.htm

  21. Canada - Therapeutic Products Diretorate (TPD) - www.hc-sc.gc.ca/hpb-dgps/therapeutic/htmleng

  22. Chile - Chile Regulatory Agency - www.minsal.cl

  23. Russia - Czech Republic - www.sukl.cz/enindex.htm

  24. Denmanrk - The Danish Medicines Agency - www.laegemiddelstyrelsen.dk/index_en.htm

  25. Estonia - State Agency of medicines - www.dam.ee

  26. Greece - EOD - www.eof.gr

  27. Hong Kong - Hong Kong Department od Health Welfare and Food - www.fwfb.gov.hk/eindex.html

  28. India - Ministry of health and family welfare - http://mohfw.nic.in

  29. Ireland - Irish Medicine Board - www.imb.ie

  30. Japan - Ministry of Health, Labour and Welfare - (MHLW) - www.mhlw.go.jp/english

  31. Russia - Ministry of Health of the Russian Federation - www.minsalud.gov.com

  32. Switzerland - Swiss Medic - www.swissmedic.ch


segunda-feira, 16 de maio de 2011

Aspergillus niger

Aspergillus niger is a fungus and one of the most common species of the genus Aspergillus. It causes a disease called black mold on certain fruits and vegetables such as grapes, onions, and peanuts, and is a common contaminant of food. It is ubiquitous in soil and is commonly reported from indoor environments, where its black colonies can be confused with those of Stachybotrys (species of which have also been called "black mould").[1]

Some strains of A. niger have been reported to produce potent mycotoxins called ochratoxins,[2] but other sources disagree, claiming this report is based upon misidentification of the fungal species. Recent evidence suggests some true A. niger strains do produce ochratoxin A.[1][3]

Human and animal diseaseA. niger is less likely to cause human disease than some other Aspergillus species, but, if large amounts of spores are inhaled, a serious lung disease, aspergillosis can occur. Aspergillosis is, in particular, frequent among horticultural workers that inhale peat dust, which can be rich in Aspergillus spores. It has been found on the walls of ancient Egyptian tombs and can be inhaled when the area is disturbed.[citation needed] A. niger is one of the most common causes of otomycosis (fungal ear infections), which can cause pain, temporary hearing loss, and, in severe cases, damage to the ear canal and tympanic membrane.

REF:http://en.wikipedia.org/wiki/Aspergillus_niger ACessado em 16/05/11

Aspergillus niger
On Czapek dox agar, colonies consist of a compact white or yellow basal felt covered by a dense layer of dark-brown to black conidial heads. Conidial heads are large (up to 3 mm x 15-20 um in diameter), globose, dark brown, becoming radiate and tending to split into several loose columns with age. Conidiophores are smooth-walled, hyaline or turning dark towards the vesicle. Conidial heads are biseriate with the phialides borne on brown, often septate metulae. Conidia are globose to subglobose (3.5-5.0 um in diameter), dark brown to black and rough-walled. RG-1 organism.

Clinical significance:
Aspergillus niger is one of the most common and easily identifiable species of the genus Aspergillus, with its white to yellow mat later bearing black conidia. This is the third most common species associated with invasive pulmonary aspergillosis. It is also often a causative agent of aspergilloma and is the most frequently encountered agent of otomycosis. A. niger may also be a common laboratory contaminant.

REF: http://www.mycology.adelaide.edu.au/Fungal_Descriptions/Hyphomycetes_(hyaline)/Aspergillus/niger.html Acessado em 16/05/11

Bacillus sp

Bacillus is a genus of Gram-positive rod-shaped bacteria and a member of the division Firmicutes. Bacillus species can be obligate aerobes or facultative anaerobes, and test positive for the enzyme catalase.[1] Ubiquitous in nature, Bacillus includes both free-living and pathogenic species. Under stressful environmental conditions, the cells produce oval endospores that can stay dormant for extended periods. These characteristics originally defined the genus, but not all such species are closely related, and many have been moved to other genera.[2]

^ Madigan M; Martinko J (editors). (2005). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 0-13-144329-1.

ref:

Bacilli are rod-shaped, Gram-positive, sporulating, aerobes or facultative anaerobes. Most bacilli are saprophytes. Each bacterium creates only one spore, which is resistant to heat, cold, radiation, desiccation, and disinfectants. Bacilli exhibit an array of physiologic abilities that allow them to live in a wide range of habitats, including many extreme habitats such as desert sands, hot springs, and Arctic soils. Species in the genus Bacillus can be thermophilic, psychrophilic, acidophilic, alkaliphilic, halotolerant, or halophilic and are capable at growing at pH values, temperatures, and salt concentrations where few other organisms can survive
Ecology
Due to the metabolic diversity in the genus Bacillus, bacilli are able to colonize a variety of habitats ranging from soil and insects to humans. Bacillus thuringiensis parasitizes insects, and is commercially used for pest control. Although the most well known of the bacilli are the pathogenic species, most Bacillus are saprophytes that make their living off of decaying matter. Still others, namely Bacillus subtilis, inhabit the rhizosphere, which is the interface between plant roots and the surrounding soil. The plants roots and associated biofilm can have a significant effect on the chemistry of the soil, creating a unique environment.


REFhttp://microbewiki.kenyon.edu/index.php/Bacillus Acessado em 16/05/11

segunda-feira, 9 de maio de 2011

Ralstonia pickettii

Ralstonia pickettii
From MicrobeWiki, the student-edited microbiology resource
Classification
Bacteria; Proteobacteria; Beta Proteobacteria; Burkholderiales; Ralstoniaceae
Ralstonia Picketti
NCBI: Taxonomy

Ralstonia Pickettii
Synonyms: Burkholderia picketti, Burkholderia solanacearum, Alcaligenes eutrophus
Strains: 12J,12D
Description and Significance
Ralstonia pickettii is a gram-negative, rod shaped beta proteobacteria found in moist environments such as soils, river and lakes [2]. It has also been identified in biofilms in plastic water pipes [1]. It is an olgiotrophic organism, making it capable of surviving in areas with a very low concentration of nutrients [1]. Several strains have shown an ability to survive in environments highly contaminated with metals such as Copper (Cu), Nickel (Ni), Iron (Fe) and Zinc (Zn). The ability to persist in these harsh conditions makes R. picketti a unique candidate for bioremediation. In a study done by Fett et al., R. pickettii was shown to be resistant to environments with up to 1200 µg/mL of Cu, surviving by using phosphates to sequester the metal [3].
Genome Structure
There are two separate strains of Ralstonia pickettii, 12 D and 12 J of sizes 3.5 Mb and 3.0 Mb respectively [7]. While their rRNA sequence is indentical, there are significant differences in their genomic structures [7]. The 12 D strain contains two circular chromosomes 3,647,724bp and 1,323,321 bp in size; as well as three circular plasmids 389,779 bp, 273,136 bp and 51,398 bp in size [8]. The 12 J strand also consists of two circular chromosomes 3,942,557 bp and 1,302,228 bp in size; but has only one circular plasmid that is 80,934 bp in size [9].
Cell Structure and Metabolism
Ralstonia pickettii is a gram-negative rod shaped bacteria. These bacteria are culturable in the lab and often form dense dark white colonies. It is strictly an aerobe and is not capable of fermentive respiration [4]. As a chemoheterotroph it depends on an outside carbon source for cell growth, meaning that in remediation, biostimulation can result in increased results of disposing of the pollutant [1]. And, as a siderophore, R. pickettii thrives in environments containing high levels of Iron, and is capable of sollublizing Fe3+ [5]. R. pickettii can also break down several aromatic hydrocarbons or volatile organic compounds (VOC’s) such as cresol (C7H8O), phenol (C6H5OH) and toluene (C7H8). These chemical compounds are commonly found in household products including antiseptics, germicides and cleaners. They are hazardous to the environment, and often accumulate to toxic levels in soil and groundwater [1]. R. pickettii is able to exploit this resource by using the hydrocarbons as both a source of carbon and energy. This process is achieved through a series of multi-enzyme pathways, including the Tbu pathway which converts aromatic hydrocarbons to catechols [1]. Another distinguishing feature of this bacteria is that is can metabolize aromatic hydrocarbons in hypoxic environments. Unlike other toluene metabolizing bacteria, R. pickettii can break down toluene even when oxygen levels are only 25% of air-saturated water [1].
Pathogenesis
Ralstonia pickettii pathology does not follow an easy definition; although no fully healthy human has ever become ill from R. pickettii, the bacteria has seriously affected humans with poor health. Several hospitals have reported outbreaks - in particular, patients with cystic fibrosis and Crohn’s Disease have been shown to be infected R. pickettii [2]. Of the 55 reported cases of infection by R. pickettii, the majority are due to contaminated solutions such as water, saline and sterile drugs [6]. These solutions are usually contaminated when the product is manufactured, due to the fact that R. pickettii has the ability to pass through 0.45 and 0.2mm filters that are used to stearilize medicinal products [6]. As a result when given as a drip solution, intravenously, or for endotracheal suctioning these contaminated solutions often lead infection in both the blood stream and the respiratory system [6].
Ecology and Biotechnology
The ability of Ralstonia pickettii to withstand high metal concentrations led to multiple test to determine if the bacteria could be used for bioremediation. The fact that R. pickettii grows easily in so many environments and does act as a pathogen makes it a great option. In vitro tests have shown that through biostimulation, R. pickettii was capable of degrading such contaminates as TCE and aromatic hydrocarbons [1]. The PKO1 strain has a future to be a great biodegrader as it was capable of remediating several pollutants [1]. The LD1 strain showed the ability to degrade chlorinated phenolic compounds [1]. These CPC’s were frequently used, as pesticides are an extremely common contaminate [1].
References
1. Adley C, Pembroke J, Ryan M. (Feb 2007) Ralstonia pickettii in environmental biotechnology potential and applications. Journal of Applied Microbiolgy. Vol 103. pp 754-764.
2. Coenye T, De Vos P, Goris J, Vandamme P. (2003). Classification of Ralstonia pickettii-like isolates from the environment and clinical samples as Ralstonia insidiosa. International Journal of Systematic and Evolutionary Microbiology. Vol 53. 2003 pp 1075-1080
3. Fett J, Konstantinidis K, Isaacs N, Long D, Marsh T. (Feb 2003).Microbial Diversity and Resistance to Copper in Metal-Contaminated Lake Sediment. Microbial Ecology. Vol 45. Feb 2003. pp 191-202
4. Buckner D, Colona P. (Jul 1997) Nomenclature for Aerobic and Facultative Bacteria. Clinical Infectious Diseases. Vol 25. pp 1-10
5. Biebl M, Bonatti H, Eller M, Fille M, Hoeller E, Lass-Floerl C, Stelzmueller I, Weiss G. (2006) Ralstonia pickettii-innocent bystander or a potential threat?. Clinical Microbial Infect. Vol 12. pp 99-101
6. Ryan, M. P., J. T. Pembroke, and C. C. Adley. (2006) Ralstonia Pickettii: a Persistent Gram-negative Nosocomial Infectious Organism." Journal of Hospital Infection Vol 62. March 2006. pp278-84.
7. "Ralstonia Pickettii." JGI Genome Portal - Home. Web. 25 Apr. 2010. .
8. "HAMAP: Ralstonia Pickettii (strain 12D) Complete Proteome." ExPASy Proteomics Server. Swiss Institute for Bioinformatics. Web. 25 Apr. 2010. .
9. "HAMAP: Ralstonia Pickettii (strain 12J) Complete Proteome." ExPASy Proteomics Server. Swiss Institute for Bioinformatics. Web. 25 Apr. 2010. .
Author
Page authored by Jeff Eggleston and Sarah Dionne, students of Prof. Jay Lennon at Michigan State University.

REF: http://microbewiki.kenyon.edu/index.php/Ralstonia_pickettii Acessado em 09/05/2011