Microbacterium paraoxydans sp. nov
Cells of Microbacterium paraoxydans (pa-ra-o′-xy-dans, because the organism resembles M. oxydans) are small, gram-positive, coryneform rods that grow aerobically at 20, 37, and 40°C. Colonies are bright yellow, smooth, and sometimes sticky and reach a diameter of 2 mm after 48 h of incubation at 37°C on blood agar. Strains are motile by peritrichous flagella
re fBacteremia Due to a Novel Microbacterium Species in a Patient with Leukemia and Description of Microbacterium paraoxydans sp. nov.
Kim Laffineur,1 Véronique Avesani,1 Guy Cornu,2 Jacqueline Charlier,1 Michèle Janssens,1 Georges Wauters,1* and Michel Delmée1
Microbiology Unit, Faculty of Medicine, University of Louvain,1 Pediatrics, University Hospital St-Luc, B-1200 Brussels, Belgium2
*Corresponding author. Mailing address: University of Louvain, Microbiology Unit, UCL/5490, Av. Hippocrate 54, B-1200 Brussels, Belgium. Phone: 32 2 7645490. Fax: 32 2 7649440. E-mail: wauters@mblg.ucl.ac.be
.Received October 21, 2002; Revised December 10, 2002; Accepted January 27, 2003.
J Clin Microbiol. 2003 May; 41(5): 2242–2246.
doi: 10.1128/JCM.41.5.2242-2246.2003.
http://ukpmc.ac.uk/articles/PMC154712;jsessionid=C6C36D76C14D71DD38A74804427797B1.jvm4
Aerobic heterotrophic bacterium found in soil and other environments. Some species are opportunistic pathogens.
ref:Environmental Microbiology por Raina M. Maier, Ian L. Pepper, Charles P. Gerba, second edition, Elsevier Academic Press, 2009
Among the coryneform bacteria, the phenotypically and phylogenetically closely related genera Microbacterium and Aureobacterium have been united in the redefined genus Microbacterium.At present, the genus Microbacterium comprises 55 species (www.bacterio.cict.fr/m/microbacterium.html), all of which exhibit more or less yellow-pigmented gram-positive rods
ref:Journal of Clinical Microbiology, November 2008, p. 3646-3652, Vol. 46, No. 11
0095-1137/08/$08.00+0 doi:10.1128/JCM.01202-08
Copyright © 2008, American Society for Microbiology. All Rights Reserved.
Identities of Microbacterium spp. Encountered in Human Clinical Specimens
Kathrina Gneiding, Reinhard Frodl, and Guido Funke*
Department of Medical Microbiology and Hygiene, Gärtner & Colleagues Laboratories, Ravensburg, Germany
Received 25 June 2008/ Returned for modification 19 August 2008/ Accepted 7 September 2008
terça-feira, 29 de junho de 2010
Mycellia sterillia
The sterile fungi, or mycelia sterilia are a group of fungi that do not produce any known spores, either sexual or asexual. This is considered a form group, not a taxonomic division, and is used as a matter of convenience. Because these fungi do not produce spores, it is impossible to use traditional methods of morphological comparison to classify them. However, molecular techniques can be applied to determine their evolutionary history.
http://en.wikipedia.org/wiki/Sterile_fungi
http://en.wikipedia.org/wiki/Sterile_fungi
Aeromonas veronii
Aeromonas veronii is a gram-negative, rod-shaped bacterium found in fresh water and in association with animals. It can be a pathogen of humans and a beneficial symbiont of leeches. In humans A. veronii can cause diseases ranging from wound infections and diarrhea to septicemia in immunocompromised patients. In leeches, this bacterium is thought to function in the digestion of blood, provision of nutrients or preventing other bacteria from growing.
http://en.wikipedia.org/wiki/Aeromonas_veronii
http://en.wikipedia.org/wiki/Aeromonas_veronii
Cladosporium sp
Colonies are rather slow growing, mostly olivaceous-brown to blackish brown but also sometimes grey, buff or brown, suede-like to floccose, often becoming powdery due to the production of abundant conidia. Vegetative hyphae, conidiophores and conidia are equally pigmented. Conidiophores are more or less distinct from the vegetative hyphae, are erect, straight or flexuous, unbranched or branched only in the apical region, with geniculate sympodial elongation in some species
Cladosporium species have a world-wide distribution and are amongst the most common of air-borne fungi. Some 500 species have been described. Isolates of Cladosporium are frequently isolated as contaminants.
Candida parapsilosis
Candida parapsilosis is not an obligate human pathogen, having been isolated from nonhuman sources such as domestic animals, insects or soil. Candida parapsilosis is also a normal human commensal and it is one of the fungi most frequently isolated from the human hands.
http://en.wikipedia.org/wiki/Candida_parapsilosis
On Sabouraud's dextrose agar colonies are white to cream colored, smooth, glabrous and yeast-like in appearance.
Environmental isolations have been made from intertidal and oceanic waters, pickle brine, cured meats, olives and normal skin, and faeces.
http://www.mycology.adelaide.edu.au/Fungal_Descriptions/Yeasts/Candida/Candida_parapsilosis.html
http://en.wikipedia.org/wiki/Candida_parapsilosis
On Sabouraud's dextrose agar colonies are white to cream colored, smooth, glabrous and yeast-like in appearance.
Environmental isolations have been made from intertidal and oceanic waters, pickle brine, cured meats, olives and normal skin, and faeces.
http://www.mycology.adelaide.edu.au/Fungal_Descriptions/Yeasts/Candida/Candida_parapsilosis.html
Candida guilliermondii
On Sabouraud's dextrose agar colonies are white to cream colored, smooth, glabrous and yeast-like in appearance.
C. guilliermondii has also been isolated from normal skin and in sea water, faeces of animals, fig wasps, buttermilk, leather, fish and beer.
http://www.mycology.adelaide.edu.au/Fungal_Descriptions/Yeasts/Candida/Candida_guilliermondii.html
C. guilliermondii has also been isolated from normal skin and in sea water, faeces of animals, fig wasps, buttermilk, leather, fish and beer.
http://www.mycology.adelaide.edu.au/Fungal_Descriptions/Yeasts/Candida/Candida_guilliermondii.html
domingo, 27 de junho de 2010
Staphylococcus capitis
Staphylococcus capitis is part of the normal flora of the skin of the scalp, face, neck and ears.
REF: Prothetic Valve Endocarditis caused by Staphylococcus capitis, Yasushi TErada, MD, Toshio Mitsui, MD, Yoshiharu Enomoto, MD; Institute of Clinical University of Tsukuba Hospital University of Tsukuba 305 japan
http://ats.ctsnetjournals.org/cgi/content/full/62/1/324
REF: Prothetic Valve Endocarditis caused by Staphylococcus capitis, Yasushi TErada, MD, Toshio Mitsui, MD, Yoshiharu Enomoto, MD; Institute of Clinical University of Tsukuba Hospital University of Tsukuba 305 japan
http://ats.ctsnetjournals.org/cgi/content/full/62/1/324
Micrococcus luteus
Micrococcus luteus is a Gram positive, spherical, saprotrophic bacterium that belongs to the family Micrococcaceae. An obligate aerobe, M. Luteus is found in soil,dust, water and air, and as part of the normal flora of the mammalian skin. The bacteria also colonizes the human mouth, mucosae, oropharynx and upper respiratory tracts.
http://en.wikipedia.org/wiki/Micrococcus_luteus
http://en.wikipedia.org/wiki/Micrococcus_luteus
Comamonas testosteroni
Comamonas testosteroni is an a aerobic, motile, non-spore-forming, medium-to-long gram negative bacillus which occurs singly or in pairs and is known to use testosterone. It´s an a environmental microrganism of worldwide distribution that is found in water, soil, and on plants.
It´s not been recognized to be a component of the endogenous human microflora.
Ref: Comamonas testosteroni Bacteremia: A Case Report and Review of Literature, Abraha, JoEllyn M. MD.; Simon, Gary L. MD., PhD. Infectious Diseases in Clinical Practice, July 2007 - Volume 15, Issue 4 -pp 272-273. doi 10. 1097/IPC.0b13e31802ce475
http://journals.lww.com/infectdis/Fulltext/2007/07000/Comamonas_testosteroni_Bacteremia__A_Case_Report.15.aspx
It´s not been recognized to be a component of the endogenous human microflora.
Ref: Comamonas testosteroni Bacteremia: A Case Report and Review of Literature, Abraha, JoEllyn M. MD.; Simon, Gary L. MD., PhD. Infectious Diseases in Clinical Practice, July 2007 - Volume 15, Issue 4 -pp 272-273. doi 10. 1097/IPC.0b13e31802ce475
http://journals.lww.com/infectdis/Fulltext/2007/07000/Comamonas_testosteroni_Bacteremia__A_Case_Report.15.aspx
PARA LER - ENVIRONMENTAL MONITORING PROGRAMS
PDA - 2001 - PDA Tech Report #13 (Revised): Fundamentals of an Environmental Monitoring Program
EU-2008 - Eudralex The Rules Governing Medical Products in the European Union Volume 4: EU Guidelines to Good Manufacturing Practice Medical Products for Human and Veterinary Use: Annex 1 Manufacture of Sterile Medical Products.
PICS, 2004. PI-006-2 - Recomendations on VMP, Installation and Operational Qualification, Non-Sterile Process Validation, Cleaning Validation.
USP 1116 - Microbioogical Control and Monitoring Environments Used for the Manufacture of Healthcare Products
EU-2008 - Eudralex The Rules Governing Medical Products in the European Union Volume 4: EU Guidelines to Good Manufacturing Practice Medical Products for Human and Veterinary Use: Annex 1 Manufacture of Sterile Medical Products.
PICS, 2004. PI-006-2 - Recomendations on VMP, Installation and Operational Qualification, Non-Sterile Process Validation, Cleaning Validation.
USP 1116 - Microbioogical Control and Monitoring Environments Used for the Manufacture of Healthcare Products
sábado, 26 de junho de 2010
Microbiological analysis of Water
THEORY
The greatest threat to water supplies is contamination by raw sewage which contains pathogens capable of causing a number of diseases. The examitanion of drinking water for the presence of specific pathogens, whether they are viral, bacterial or protozoal, is time consuming, impractical, expensive, and requires a fairly hogh level of technical expertise. It is not necessary for routine testing and control.
Pollution may occur at irregular intervals or at short notice, due to problems such as damage to distribution systems or heavy rain following a long drought. One satisfactory examination does not mean therefore that the water supply will remain safe over a long period of time.
Monitoring for the presence of specific pathogens is unnecessary. Pathogens present tend to die out more quickly and are more difficult to detect than the normal human or animal gut microflora. Therefore the use of relatively rapid, simple, and cheap tests to determine the presence or absence of commensal indicator organisms is adequate.
The bacterial indicator used for faecal pollution are Escherichia coli , the coliform group, faecal streptococci, and Clostridium perfringens. These indicator organisms persist much longer than pathogens and are realtively easy to isolate and identify as they are present in faeces in large numbers. Their presence in water shows that the water has been polluted by sewage at some time in tis part history, and is therefore a potential health hazard. The tests for coliforms and E. coli are the most important of these routine tests.
COLIFORMS
The characteristics features of the coliforms are non-sporing, Gram-negative rods, which are vile tolerant and able to ferment lactose at 37 graus Celsius producing, acid and gas within 48 hrs. The term faecal coliform was used to describe coliforms capable to fermenting lactose to acid within 24 hrs at 44 graus Celsius.
The presence of coliforms in water indicates that pahogens could be present, and that the supply is potentially dangerous, although there is no correlation between numbers of coliforms and pathogens. The absence of coliforms indicates that pathogens are probably absent.
Eschreichia coli
E.coli is a thermotolerant coliform. It is very rarely found in water when faecal pollution is absent, and testing for E.coli and coliforms is the most sensitive method of demonstrating faecal pollution. Confirmation of the presence of E.coli indicates faecal pollution and prossible presence of intestinal pathogens. High counts suggest recent or heavy pollution, whilst low counts suggest slight pollution or pollution at some time in the distant past.
The absence of E.coli combined with the presence of coliforms is more difficult to interpret. Whilst faecal pollution is the most probable explanation of contamination by coliforms, there are also other sources of coliforms which are generally innocuous, e.g., decaying vegetation and other organic matter such as washers and grease used in pipe joints.
Faecal Streptococci
This problem be solved by examining the water for faecal streptococci. Faecal streptococci survive longer in water than E.coli , and are more resistant to chlorination. The presence of faecal streptococci is always indicative of faecal pollution and therfore they are a useful method of determining the significance of a result in whch E.coli is absent, but coliforms are present
Streptococcus faecalis is the species found mainly in humans.
Clostricium perfringens
This indicator organism is an anaerobic Gram-positive rod, usually present in faeces in low numbers. It produces spores which resist boiling, survive for long periods in water, and show considerable resistance to chlorination. The presence os C. perfringens in water samples on several succesive occasions suggests that the frequency of sampling should be increased. As Clostridium spores are resistant to chlorination, the presence of spres in contaminated water which has been treated, combined with an absence of coliforms, show that the treatment process has been successful.
PLATE COUNT
Large quantities of water are udes in the food, drink, and pharmaceutical industries. This is frequently subjected to further treatment on entering the plant and is usually of very high quality. Plate counts are used widely in these idustries to assess the effectiveness of this extra treatment.
Pseudomonas
The industries also frequently test for the genus Pseudomonas especially the fluorescent pseudomonads, which are found widely in dust, air and water, frequently occcuring in spoilage situation. The pseudomonasds are a diverse, poorly defined group and in this context tests for Pseudomonas aeruginosa are usually carried out.
REF: Microbiology for the Analytical Chemist, R. K. Dart, Loughborough University, The Royal Society of Chemistry, Information Services, 1996.
The greatest threat to water supplies is contamination by raw sewage which contains pathogens capable of causing a number of diseases. The examitanion of drinking water for the presence of specific pathogens, whether they are viral, bacterial or protozoal, is time consuming, impractical, expensive, and requires a fairly hogh level of technical expertise. It is not necessary for routine testing and control.
Pollution may occur at irregular intervals or at short notice, due to problems such as damage to distribution systems or heavy rain following a long drought. One satisfactory examination does not mean therefore that the water supply will remain safe over a long period of time.
Monitoring for the presence of specific pathogens is unnecessary. Pathogens present tend to die out more quickly and are more difficult to detect than the normal human or animal gut microflora. Therefore the use of relatively rapid, simple, and cheap tests to determine the presence or absence of commensal indicator organisms is adequate.
The bacterial indicator used for faecal pollution are Escherichia coli , the coliform group, faecal streptococci, and Clostridium perfringens. These indicator organisms persist much longer than pathogens and are realtively easy to isolate and identify as they are present in faeces in large numbers. Their presence in water shows that the water has been polluted by sewage at some time in tis part history, and is therefore a potential health hazard. The tests for coliforms and E. coli are the most important of these routine tests.
COLIFORMS
The characteristics features of the coliforms are non-sporing, Gram-negative rods, which are vile tolerant and able to ferment lactose at 37 graus Celsius producing, acid and gas within 48 hrs. The term faecal coliform was used to describe coliforms capable to fermenting lactose to acid within 24 hrs at 44 graus Celsius.
The presence of coliforms in water indicates that pahogens could be present, and that the supply is potentially dangerous, although there is no correlation between numbers of coliforms and pathogens. The absence of coliforms indicates that pathogens are probably absent.
Eschreichia coli
E.coli is a thermotolerant coliform. It is very rarely found in water when faecal pollution is absent, and testing for E.coli and coliforms is the most sensitive method of demonstrating faecal pollution. Confirmation of the presence of E.coli indicates faecal pollution and prossible presence of intestinal pathogens. High counts suggest recent or heavy pollution, whilst low counts suggest slight pollution or pollution at some time in the distant past.
The absence of E.coli combined with the presence of coliforms is more difficult to interpret. Whilst faecal pollution is the most probable explanation of contamination by coliforms, there are also other sources of coliforms which are generally innocuous, e.g., decaying vegetation and other organic matter such as washers and grease used in pipe joints.
Faecal Streptococci
This problem be solved by examining the water for faecal streptococci. Faecal streptococci survive longer in water than E.coli , and are more resistant to chlorination. The presence of faecal streptococci is always indicative of faecal pollution and therfore they are a useful method of determining the significance of a result in whch E.coli is absent, but coliforms are present
Streptococcus faecalis is the species found mainly in humans.
Clostricium perfringens
This indicator organism is an anaerobic Gram-positive rod, usually present in faeces in low numbers. It produces spores which resist boiling, survive for long periods in water, and show considerable resistance to chlorination. The presence os C. perfringens in water samples on several succesive occasions suggests that the frequency of sampling should be increased. As Clostridium spores are resistant to chlorination, the presence of spres in contaminated water which has been treated, combined with an absence of coliforms, show that the treatment process has been successful.
PLATE COUNT
Large quantities of water are udes in the food, drink, and pharmaceutical industries. This is frequently subjected to further treatment on entering the plant and is usually of very high quality. Plate counts are used widely in these idustries to assess the effectiveness of this extra treatment.
Pseudomonas
The industries also frequently test for the genus Pseudomonas especially the fluorescent pseudomonads, which are found widely in dust, air and water, frequently occcuring in spoilage situation. The pseudomonasds are a diverse, poorly defined group and in this context tests for Pseudomonas aeruginosa are usually carried out.
REF: Microbiology for the Analytical Chemist, R. K. Dart, Loughborough University, The Royal Society of Chemistry, Information Services, 1996.
domingo, 20 de junho de 2010
Pseudomonas fluorescens
Pseudomonas fluorescens são bacilos Gram negativos em forma de bastão, possuem motilidade e multiplos flagelos.
São encontrados principalmente em solos e água (1)
Ref:
1 - htt://en.wikipedia.org/wiki/Pseudomonas_fluorescens Acessado em 27/01/11
São encontrados principalmente em solos e água (1)
Ref:
1 - htt://en.wikipedia.org/wiki/Pseudomonas_fluorescens Acessado em 27/01/11
Cupriavidus pauculus
É um micro-organismo que tem sido isolado da água (1), água proveniente do sistema de ultra-filtração e garrafas de água mineral (2)
Cupriavidus pauculus é um bacilo gram negativo não fermentativo, que apresenta motilidade e raramente associado com infecções humanas (2)
ref:
1 -http://jcm.asm.org/cgi/content/abstract/JCM.01874-09v1
2 - http://www.ncbi.nlm.nih.gov/pubmed/20455409
Cupriavidus pauculus é um bacilo gram negativo não fermentativo, que apresenta motilidade e raramente associado com infecções humanas (2)
ref:
1 -http://jcm.asm.org/cgi/content/abstract/JCM.01874-09v1
2 - http://www.ncbi.nlm.nih.gov/pubmed/20455409
Aspergyllus niger (braziliensis)
É uma das espécies mais encontradas no solo.
OCHRATOXINAS: tem efeitos hepatotóxicos, nefrotoxicos, imunossupressores, teratogênicos e são a causa de tumores no trato urinário
A produção de ochratoxina pelo A. niger é muito baixa.
O Aspergillus em ambientes indoor, são geralmente associados com inundações, vazamentos de canose tetos, condensação de sestemas HVAC, ou úmidade no chão ( fundamento) e banheiros.
Ref: Health effects pf Aspergyllus in food and air, Maren A. Klich, Review article
Aspergillus niger is a fungus and one of the most common species of the genus Aspergillus. It causes a disease called black mold on certain fruits and vegetables such as grapes, onions, and peanuts, and is a common contaminant of food. It is ubiquitous in soil and is commonly reported from indoor environments, where its black colonies can be confused with those of Stachybotrys (species of which have also been called "black mould").[1]
Some strains of A. niger have been reported to produce potent mycotoxins called ochratoxins,[2] but other sources disagree, claiming this report is based upon misidentification of the fungal species. Recent evidence suggests some true A. niger strains do produce ochratoxin A.[1][3]
1.^ a b Samson RA, Houbraken J, Summerbell RC, Flannigan B, Miller JD (2001). Common and important species of fungi and actinomycetes in indoor environments. In: Microogranisms in Home and Indoor Work Environments. New York: Taylor & Francis. pp. 287–292. ISBN.
2.^ Abarca M, Bragulat M, Castellá G, Cabañes F (1994). "Ochratoxin A production by strains of Aspergillus niger var. niger". Appl Environ Microbiol 60 (7): 2650–2. PMID 8074536.
3.^ Schuster E, Dunn-Coleman N, Frisvad JC, Van Dijck PW (August 2002). "On the safety of Aspergillus niger--a review". Applied microbiology and biotechnology 59 (4-5): 426–35. doi:10.1007/s00253-002-1032-6. PMID 12172605.
http://en.wikipedia.org/wiki/Aspergillus_niger
OCHRATOXINAS: tem efeitos hepatotóxicos, nefrotoxicos, imunossupressores, teratogênicos e são a causa de tumores no trato urinário
A produção de ochratoxina pelo A. niger é muito baixa.
O Aspergillus em ambientes indoor, são geralmente associados com inundações, vazamentos de canose tetos, condensação de sestemas HVAC, ou úmidade no chão ( fundamento) e banheiros.
Ref: Health effects pf Aspergyllus in food and air, Maren A. Klich, Review article
Aspergillus niger is a fungus and one of the most common species of the genus Aspergillus. It causes a disease called black mold on certain fruits and vegetables such as grapes, onions, and peanuts, and is a common contaminant of food. It is ubiquitous in soil and is commonly reported from indoor environments, where its black colonies can be confused with those of Stachybotrys (species of which have also been called "black mould").[1]
Some strains of A. niger have been reported to produce potent mycotoxins called ochratoxins,[2] but other sources disagree, claiming this report is based upon misidentification of the fungal species. Recent evidence suggests some true A. niger strains do produce ochratoxin A.[1][3]
1.^ a b Samson RA, Houbraken J, Summerbell RC, Flannigan B, Miller JD (2001). Common and important species of fungi and actinomycetes in indoor environments. In: Microogranisms in Home and Indoor Work Environments. New York: Taylor & Francis. pp. 287–292. ISBN.
2.^ Abarca M, Bragulat M, Castellá G, Cabañes F (1994). "Ochratoxin A production by strains of Aspergillus niger var. niger". Appl Environ Microbiol 60 (7): 2650–2. PMID 8074536.
3.^ Schuster E, Dunn-Coleman N, Frisvad JC, Van Dijck PW (August 2002). "On the safety of Aspergillus niger--a review". Applied microbiology and biotechnology 59 (4-5): 426–35. doi:10.1007/s00253-002-1032-6. PMID 12172605.
http://en.wikipedia.org/wiki/Aspergillus_niger
sábado, 19 de junho de 2010
MÉTODOS DE ESTERILIZAÇÃO
CALOR SECO
Destrói os micro-organismos através da oxidação de seus constituintes. A esterilização por calor seco é muito mais lenta e menos eficaz que o calor úmido. Ao contrário do calor úmido, nesse tipo de esterilização o calor é transferido muito lentamente e o nível de hidratação das células tende a diminuir, conferindo certa proteção as proteínas. Não somente este mecanismos, pois dependendo do conteúdo de água na célula, pode ocorrer também a coagulação das proteínas.
UV
É absorvida por muitas substâncias celulares, mas mais significativo pelos ácidos nucleicos, onde geralmente ocorrem lesões. O seu efeito letal é proporcional a dose de radiação aplicada. A região de espectro UV esterilizante é de 220 a 330 nm.Existe uma relação entre os comprimentos de ondas germicidas e aqueles absorvidos pelos ácidos nucléicos ou seus constituintes. Compostos como purinas e pirimidinas absorvem UV aproximadamente em 260 nm. Os aminoáciso aromáticos como triptofano, fenilalanina e tirosina absorvem a 280 nm. Dentre os componentes dos aminoácidos nucléicos, os fosfatos de açúcares não absorvem significativamente UV acima de 220 nm. As pirimidinas são muito mais sensiveis ao UV do que as purinas por isto os efeitos letais e de mutagênese nos sistemas biológicos são atribuídos a transformações fotoquímicas das bases pirimidinas.
A ação esterilizante do UV ocorre primeiramente pela produção de ligações cruzadas entre pirimidinas adjacentes na mesma fita de DNA, formando dimeros.Esta reação ocorre primeiramente entre resíduos de tinina, formando dimeros de tinina, levando perda da integridade do DNA bacteriano.
Essas ligações podem levar erro de leitura no código genético, resultando em mutações. Existem mecanismos de reparo, pelos quais a integridade do DNA pode ser recuperada, dependendo do nivel de lesão.
Menos frequentes dimeros de citosina-timina e citosina-citosina.
Vários fatores podem influenciar na sensibilidade microbiana UV. Destacam-se o pH, o estado fisiológico das células ( a maior atividade é na fase logarítimica de crescimento) e a constituição genética.
ESTERILIZAÇÃO POR CALOR ÚMIDO
Injeção de vapor-----> expulsão de ar presente ----> reator fechado ----> injeção de vapor (até temperatura e pressão adequado 121*C a 1 atm ---> novas injeções p/ manter temp e pressão----->terminada a esterilização----> entrada de vapor fechada ----> entra ar esterilizado (p/ evitar que o resfriamento e consequente condensação do vapor presente gere vácuo danificando o equipamento ou promover a entrada de ar externo)-----> resfriamento e estabilização de pressão interna.
Ref: Biotecnologia Industrial vol 2 Engenharia Bioquimica, coordenadores: Willibaldo Schmidell, Urgel de Almeida Lima, Eugenio Aquarone, Walter Borzani, Ed. Edgard Blücher Ltda, 1a ed. 2001
Destrói os micro-organismos através da oxidação de seus constituintes. A esterilização por calor seco é muito mais lenta e menos eficaz que o calor úmido. Ao contrário do calor úmido, nesse tipo de esterilização o calor é transferido muito lentamente e o nível de hidratação das células tende a diminuir, conferindo certa proteção as proteínas. Não somente este mecanismos, pois dependendo do conteúdo de água na célula, pode ocorrer também a coagulação das proteínas.
UV
É absorvida por muitas substâncias celulares, mas mais significativo pelos ácidos nucleicos, onde geralmente ocorrem lesões. O seu efeito letal é proporcional a dose de radiação aplicada. A região de espectro UV esterilizante é de 220 a 330 nm.Existe uma relação entre os comprimentos de ondas germicidas e aqueles absorvidos pelos ácidos nucléicos ou seus constituintes. Compostos como purinas e pirimidinas absorvem UV aproximadamente em 260 nm. Os aminoáciso aromáticos como triptofano, fenilalanina e tirosina absorvem a 280 nm. Dentre os componentes dos aminoácidos nucléicos, os fosfatos de açúcares não absorvem significativamente UV acima de 220 nm. As pirimidinas são muito mais sensiveis ao UV do que as purinas por isto os efeitos letais e de mutagênese nos sistemas biológicos são atribuídos a transformações fotoquímicas das bases pirimidinas.
A ação esterilizante do UV ocorre primeiramente pela produção de ligações cruzadas entre pirimidinas adjacentes na mesma fita de DNA, formando dimeros.Esta reação ocorre primeiramente entre resíduos de tinina, formando dimeros de tinina, levando perda da integridade do DNA bacteriano.
Essas ligações podem levar erro de leitura no código genético, resultando em mutações. Existem mecanismos de reparo, pelos quais a integridade do DNA pode ser recuperada, dependendo do nivel de lesão.
Menos frequentes dimeros de citosina-timina e citosina-citosina.
Vários fatores podem influenciar na sensibilidade microbiana UV. Destacam-se o pH, o estado fisiológico das células ( a maior atividade é na fase logarítimica de crescimento) e a constituição genética.
ESTERILIZAÇÃO POR CALOR ÚMIDO
Injeção de vapor-----> expulsão de ar presente ----> reator fechado ----> injeção de vapor (até temperatura e pressão adequado 121*C a 1 atm ---> novas injeções p/ manter temp e pressão----->terminada a esterilização----> entrada de vapor fechada ----> entra ar esterilizado (p/ evitar que o resfriamento e consequente condensação do vapor presente gere vácuo danificando o equipamento ou promover a entrada de ar externo)-----> resfriamento e estabilização de pressão interna.
Ref: Biotecnologia Industrial vol 2 Engenharia Bioquimica, coordenadores: Willibaldo Schmidell, Urgel de Almeida Lima, Eugenio Aquarone, Walter Borzani, Ed. Edgard Blücher Ltda, 1a ed. 2001
ALGUMAS DEFINIÇÕES
ESTERILIZAÇÃO: remoção de todas as formas de vida de um objeto ou material.
DESINFECÇÃO: remoção ou destruição dos organismos vivos capazes de causar danos ou infecções.
DESINFECTANTE OU GERMICIDA: agente químico capaz de promover desinfecção.
ANTISSÉPTICO: agente químico aplicável em pessoas ou animais com capacidade de eliminar micro-organismos patogênicos.
ASSEPCIA: remoção de micro-organismos patogênicos ou indesejados.
BIOCIDAS: agentes capazes de causar a morte de micro-organismos.
BIOESTÁTICOS: agente capazes de impedir a reprodução de micro-organismos, sem necessidade de mata-los.
ref.: Biotecnologia Industrial vol. 2 Engenharia Bioquímica, coordenadores: Willibaldo Schmidell, Vigel de Almeida Lima, Eugenio Aquarone, Walter Borzani. Ed Edgard Blücher Ltda, 1 ed. 2001
DESINFECÇÃO: remoção ou destruição dos organismos vivos capazes de causar danos ou infecções.
DESINFECTANTE OU GERMICIDA: agente químico capaz de promover desinfecção.
ANTISSÉPTICO: agente químico aplicável em pessoas ou animais com capacidade de eliminar micro-organismos patogênicos.
ASSEPCIA: remoção de micro-organismos patogênicos ou indesejados.
BIOCIDAS: agentes capazes de causar a morte de micro-organismos.
BIOESTÁTICOS: agente capazes de impedir a reprodução de micro-organismos, sem necessidade de mata-los.
ref.: Biotecnologia Industrial vol. 2 Engenharia Bioquímica, coordenadores: Willibaldo Schmidell, Vigel de Almeida Lima, Eugenio Aquarone, Walter Borzani. Ed Edgard Blücher Ltda, 1 ed. 2001
Assinar:
Postagens (Atom)